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ABSTRACT 
 
The thermal properties of seven different wall structures, including a conventional 
brick/cavity/expanded polyurethane (PUR)/Autoclaved Aerated Concrete (AAC) wall, a 
timber frame wall, a solid AAC wall, a lightweight concrete block wall and three types of 
Insulating Concrete Formwork (ICF) walls were measured in the NPL Hot Box under both 
steady state and thermal cycling conditions. From these measurements the following thermal 
properties were derived: U-value; the energy per 24 hours to sustain a warm side temperature 
of 23 °C whilst the cold side was cycled from 2.5 °C to 14.5 °C; the amplitude of the resulting 
power fluctuations; the time lag between the maximum temperature difference and maximum 
power; and the time lag between the minimum cold side temperature and minimum warm side 
temperature. Many of these thermal properties were calculated by Glasgow Caledonian 
University using the Physibel VOLTRA software and some of the U-values were calculated 
using the methodology specified in BS EN ISO 6946. 
 
The results show that the values of the energy used per 24 hours correlated well with U-value 
and that the power fluctuations through the ICF walls were lower by a factor of 1.8 than 
through the conventional brick wall. The agreement between the U-values calculated using 
VOLTRA and the measured U-values ranged between 5% and 18% with the VOLTRA values 
always the lower value. The agreement between the U-values calculated (for the brick wall 
and lightweight concrete block wall only) using the procedure specified in BS EN ISO 6946 
agreed to with 4% of the measured values. For the ICF walls, there were some significant 
difference between the lag time of the power that was measured directly with the values 
obtained using a 0.25 m x 0.25 m HFM and with those calculated using VOLTRA. These 
differences could not be explained but are discussed. 
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1 BACKGROUND 

 
Producing low energy consumption buildings is now one of the UK’s most urgent objectives. 
The Government has stated that it will revise the building regulations to ensure we only build 
zero carbon homes by 2016. The search is on for construction methods that improve the 
thermal performance of structures without simply adding layers of insulation. One such 
method is the use of high thermal mass structures. Currently, however, the only way of 
determining the thermal performance of structures in non-steady conditions is by complex 
calculations for which there have been little or no attempts to validate by measurement.  This 
situation has been acceptable because only a few, specialised modern structures have 
attempted to utilise different combinations of thermal mass and insulation to gain thermal 
advantage. The calculation methods that were adequate for whole building energy 
calculations are not sufficiently accurate for product and design selection purposes. There is 
now a need to establish a measurement facility to enable dynamic thermal properties to be 
directly measured. This facility would then be used to both characterise specific designs and 
to validate various calculation methodologies. 
 
The measurement challenge is therefore to develop measurement facility and procedures that 
would enable the thermal performance benefit of using high thermal mass structures to be 
validated to be able to validate their use in energy efficient buildings. 
 
This project brings together a number of organisations with an interest in developing such 
measurement methodologies. The National Physical Laboratory the UK’s National 
Measurement Institute carried out the measurements and Glasgow Caledonian University with 
experience of carrying out thermal performance calculations for the construction industry 
carried out the dynamic modelling. The group also included seven manufacturers of various 
types who not only supplied some of the walls for testing but also detailed knowledge of their 
aspect of the construction industry. This project was 50% funded by the NMS Measurement 
for Innovators programme. The full list of the partners is given in Table 1. 
 

2 THE PROJECT PARTNERS 

 
The partners are listed in Table 1. 
 
Table 1   List of participating organisations 

 
 
 
 
 
 

Company
Aggregate Industries Limited
BASF - The Chemical Company
Glasgow Caledonian University
Aircrete Producers Association (APA)
Insulating Concrete Formwork Association (ICFA)
Kier Engineering Services
PolySteel UK Ltd
Pudlo David Ball Group
The Concrete Centre
National Physical Laboratory

Manufacturer of additives used in concrete
Experts in calculating thermal performance of building structures 
Trade Association for manufacturer of aircrete building blocks

Main activity

Specialist concrete wall installer
Trade Association for the whole concrete industry
UK's National Measurement Institute.

Trade Association for manufacturers of Insulated Concrete Formwork walls
Construction company and house builder
Manufacturer of Insulated Concrete Formwork walls

Concrete materials producer and supplier

 
 
 
 

Protect – Commercial 



       
 

2 

3 OVERVIEW OF PROJECT OBJECTIVES 
 

i) Adapt the NPL Wall Guarded Hot Box to enable it to carry out thermal performance 
measurements of structures with the warm side of the structure kept constant and the cold 
side of the structure cycled over a 24-hour period, though a specific temperature range. 
The cold side temperature to always be lower than the warm side temperature. Such an 
arrangement ensures that there would always be heat transfer from the warm chamber of 
the hot box to the cold chamber and so the warm chamber power could be used to derive 
the thermal performance of the structure. This was possible because of the nature of the 
NPL Wall Guarded Hot Box design ensured that the cycling cold chamber temperature 
did not result in additional heat transfer through the hot chamber walls. A schematic 
sketch of the Wall Guarded Hot Box is shown in Figure 1. 

 
ii) Build eight walls (only seven were actually built and measured) covering a wide range of 

wall types found in residential properties. The walls to be built carefully to the 
documented designs to facilitate subsequent modelling. The details of the walls built and 
the thermal performance parameters measured and calculated are given in Sections 4 & 5.  
All the wall panels were 1.2 m x 1.2 m.  

 
iii) Each wall to be instrumented with thermocouples fixed to every interface between 

different materials (and in the case of the ICF walls one to be also installed in the centre 
of the concrete), so enabling the temperature profiles through the structures to be 
recorded whilst the temperature of the cold chamber was being cycled.   

 
iv) For each wall type the following hot box measurements to be carried out: 

 
 A steady state U-value hot box measurement with the temperature of the warm chamber 

air at 24.5 °C  and the cold chamber air temperature at approximately 3 °C  
 

 A dynamic measurement with the temperature of the warm chamber air kept constant at 
24.5 °C  and the cold chamber air temperature cycled between 3 °C and 15 °C and back to 
3 °C over a 24 hour period. This cycling measurement to be carried out twice.  

 
 Firstly, deriving the power transferred through the wall panel from the measured 

power into the hot chamber, corrected for power transfer through the expanded 
polystyrene surround. 
 

 Secondly, deriving the power transferred through the wall panel from the output of a 
0.25 m x 0.25 m heat flux meter (HFM) and the associated guard plates fixed to the 
centre of the wall. 

 
v) From these steady-state and dynamic hot box measurements, the following performance 

indicators were to be derived. 
 

a) U-value (W/m2.K)   
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Figure 1  Schematic diagram of the Wall Guarded Hot Box 

NPL Wall Guarded Hot Box

      HOT BOX        COLD BOX

 X

X

Heater (dc)
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up to 6 m/s air flow

Heat 
exchanger
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Linear gradient Collar 
Guard System

Temperature gradient in steel sheet 
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polystyrene holder panel

Expanded polystyrene 
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Specimen

Air thermocouples

Heat flow meter system;
9000 μV / °C 

Heat flow kept to 
zero watts

Insulation

Insulated walls

Baffle thermocouples
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Holder panel 
thermocouples
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guard heater system 
mounted on  6 mm Al 
sheets. Temp controlled by 
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to 0.5 m/s air flow

X

X

X

Specimen surface  
thermocouples
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Differential 
t/c system

Baffle - can be moved
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b) Energy (Wh) required to maintain the temperature of the warm chamber air 

temperature at 24 °C over one complete cycle.  
 
c) The relationship between the measured U-value and the energy used to maintain 

constant temperature in the warm chamber.  
 

d) Time lag between the maximum temperature difference between the cold chamber 
and warm chamber and the resulting maximum power transfered through the wall.  

 
e) Time lag between the minimum temperature reached in the cold chamber and the 

minimum temperature reached on the warm side of the test element.  
 

f) Amplitude of the variation in power transfer through the test element caused by the 
temperature cycling of the cold chamber.  

 
g) Amplitude of the variation in power transfer through the test element caused by the 

temperature cycling of the cold chamber as a percentage of the power transferred 
through the test element in the steady-state.  

 
h) The rolling average of the U-values calculated from the one hourly data sets 

recorded during the temperature cycling.  
 

i) The difference between the rolling average U-value and the steady state U-value.   
 

vi) The thermal properties of the walls that are measured shall also be modelled by Glasgow 
Caledonian University, where possible. 

 

4 EXPERIMENTAL DETAILS 

4.1 DETAILS OF THE HOT BOX APPARATUS AND THE HFM SENSOR. 
 
All the measurements were carried out in the NPL Wall Guarded Hot Box Apparatus that 
conforms to the requirements of BS EN ISO 8990 and is accredited by UKAS to carry out 
these types of measurement. A schematic diagram of this apparatus is shown in Figure 1 and a 
photograph of a brick faced wall mounted in the surround panel is shown in Figure 2. 
 
The 1.2 m x 1.2 m wall panels were all measured mounted in a 350 mm thick expanded 
polystyrene (EPS) surround panel as shown in Figure 2. The aperture of the hot chamber is 
2 m x 2 m. To enable the power through the surround panel to be correctly accounted for 
during the cycling measurements a series of steady-state and cycling measurements were 
carried out with the surround panel aperture filled with EPS of the same density as the 
material used in the surround panel. 
 
To carry out steady state U-value measurements the temperature of the warm and cold 
chambers are established to produce a set temperature difference across the test element 
(usually 20 °C ) and after thermal equilibrium has been reached (when  both the power into 
the warm chamber and the temperatures of the warm and cold chambers are constant) all the 
temperature and power values are recorded from which the u-value is calculated. To be able 
to carry out dynamic measurements it was necessary to cycle the temperature of the cold 
chamber. The cold chamber temperature is controlled by pumping conditioned water/ethylene 
glycol mixture around a heat exchanger in the cold chamber over which the air is circulate 
using fans.  The temperature of that fluid is controlled by equipment comprising a 
compressor, heater and pump. To enable the temperature of that fluid to be cycled the 
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temperature controller used to establish the required fluid temperature was changed for a 
Eurotherm 3058 that has the capability for the set point to be programmed in a variety of 
ways. This controller was programmed to vary the set point over the range 3 °C to 15 °C and 
back to 3 °C over a 24 hour period, as a sinusoidal function.  
 
All of the cycling measurements were duplicated using a commercial heat flow meter (HFM) 
to measure the power through each wall instead of the corrected warm chamber power. This 
0.25 m x 0.25 m HFM was recalibrated for the purposes of this project in the NPL 610 mm 
Guarded Hot Plate apparatus. When the HFM was attached to the warm face of each wall it 
was surrounded by guard plates made of the same material as the HFM. In these 
measurements it was the thermal conductance of the walls that was measured not the thermal 
transmittance.  
 
Figure 2  Photograph of a wall in the surround panel of the WGHB 

 

 
 
 

4.2 DETAILS OF THE CALCULATION AND MODELLING METHODS 
 
The steady state U-values were calculated using the following methods: 

• Physibel VOLTRA (by Glasgow Caledonian University). 
• EN 6946 (by NPL) 

The dynamic thermal performance of the structures were calculated using Physibel VOLTRA 
by Glasgow Caledonian University. The modelling is described in more detail in Section 7. 
 

4.3 DETAILS OF THE WALLS.  
A summary of the wall structures used in this project is shown in Table 2 
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Table 2   Summary of wall construction details 

 
A sketch of each wall type is given in Figures 3 to 9 
.

Wall no. Description

WALL 1
ICF - 9 mm ceramic floor tiles instead of acrylic render / 65 mm 24 kg/m3 EPS on both sides 
& 150 mm thick 2400 kg/m3 concrete / plaster board (for details see comments) & STEEL 
connectors -  (BUILT BY POLYSTEEL)

WALL 2
Timber frame - 15 mm thick tongue & groove wood cladding. Wood studs (11% wood) 44 
mm thick & 140 mm deep. Knauf Timber Slab glass fibre insulation between the studs  - 
BUILT BY NPL

WALL 3
NPL Standard wall - 102 mm Brick / 45 mm air cavity / 55 mm Celotex / 100 mm AAC / 10 
mm air cavity / 12 mm plasterboard (for details of fixing see comments) - 3 stainless steel 
wall ties  - BUILT BY NPL

WALL 4 
ICF - 9 mm ceramic floor tiles instead of acrylic render / 65 mm NEOPOR Insulation on both 
sides & 150 mm thick 2400 kg/m3 concrete / plaster board (for details of fixing see 
comments) & Steel connectors -  (BUILT BY POLYSTEEL)

WALL 5 Not built

WALL 6
ICF -  9 mm ceramic floor tiles instead of acrylic render / 65 mm 24 kg/m3 EPS on both 
sides & 150 mm thick 2400 kg/m3 concrete / plaster board (for details of fixing see 
comments) & PLASTIC connectors  (BUILT BY POLYSTEEL)

Fixed on 10 mm thick 
wood blocks imitating 

dob & dab

WALL 7
APA wall - 9 mm ceramic floor tiles instead of acrylic render  / 80 mm Celatex insulation / 
200 mm thick AAC block / air cavity / plasterboard (for details of fixing see comments) 
(BUILT BY APA IN NPL HOT BOX)

WALL 8
Concrete Centre - Brick/cavity/55 mm Celotex /lightweight agregate concrete/ air cavity / 
plasterboard (for details of fixing see comments)  - 3 stainless steel wall ties                           
BUILT BY NPL

WALL 9 Aperture in EPS surround panel filled in with 350 mm thick EPS to make a solid EPS test 
element.

Fixed on 10 mm thick wood blocks imitating dob & dab and NO 
plasterboard

A series of steady state and dynamic measurements were made on this 
wall to remove the heat flux component associated with the EPS surround 

panel. 

Plasterboard fixing details

There is already a high thermal resistance on the 
warm side (the 65 mm EPS) - the additional 10 

mm air gap should not have a significant effect on 
the dynamic thermal properties.

Fixed on 10 mm thick wood blocks imitating dob & dab ONLY

Fixed on 10 mm thick wood blocks imitating dob & dab 

Plaster board fixed in it's only natural position

Fixed on 10 mm thick wood blocks imitating dob & dab AND without the 
plasterboard

Fixed on 10 mm thick wood blocks imitating dob & dab
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Figure 3     Drawing of Wall 1 - ICF Wall with EPS and steel connectors

65 mm thick
24 kg/m3 EPS

150 mm thick 2400 kg/m3 

concrete

65 mm thick
24 kg/m3 EPS

Steel connectors

Steel 
connectors

Interior 
side

Exterior 
side

Suggest 5 mm dia holes in shutter 
material for thermocouple wires

Suggest central thermocouple is 
taped to a thin wooden "lathe" - (10 
mm wide x 2 mm thick). - Fix 2 off 
thermocouples within 10 mm of 
each other)

NOTE:- To install the central 
thermocouple, the concrete filling 
must be stopped at the appropriate 
level and the thermocouple on it's 
wooden support lathe laid on the 
surface and brought through the 
side shutter before the rest of the 
concrete is added.

Side thermocouples can be "duct" 
taped to EPS before the former is 
filled with concrete and brought 
through holes in the side shutter. - 
Fix 2 thermocouples within 10 mm 
of each other (not shown) as 
insurance against breakage.

IT IS IMPORTANT THAT THE 
THERMOCOUPLES ARE BROUGHT 
OUT THE "CORRECT SIDE" 
RELATIVE TO THE INTERIOR AND 
EXTERIOR FACES

25 mm 
above the 
join in the 
EPS

596 mm 

1192 ± 3 mm

1192 ± 3 mm

Lifting eye screw socket 
(please supply lifting eyes)

Wood shutter

Lifting eye 
screw socket 

Lifting eye 
screw socket 

Acrylic 
render

Side thermocouples can be "duct" 
taped to EPS before the former is 
filled with concrete and brought 
through holes in the side shutter. - 
Fix 2 thermocouples within 10 mm 
of each other (not shown) as 
insurance against breakage.

T/c in centre 
of grid

150 mm65 mm 65 mm
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Figure 4  Drawing of  Wall 2 - Timber frame wall 

 

 
 

140

600

600

44 

Glidevale breather 
membrane
Protect TF200

12 mm
plywood

25 mm deep x 
50 mm wide 
batten

15 mm tongue & 
groove weather 
boarding

25 mm deep x 
40 mm wide 
batten

12.5 mm deep x 25 
mm "half batten"

140 mm thick Knauf 
Timber Slab glass fibre
(λ = 0.032 W.m.K)

22

Predicted U-value = 
0.29 Wm2.K

25 mm deep x 
22 mm wide 
batten

Area of studding
 = 11%
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Figure 5   Drawing of Wall 3 – Brick/PUR/AAC 

 
 

102 45

1200 mm

Expanded polystyrene 
surround panel

Brick (Sand faced flettons)

10 mm thick weak mortar joints.  
Chosen to make dismantling easy 
and made as dry as possible to 
reduce conditioning time.

AAC Blocks -
Standard 100 mm thick Celcon 
AAC block ~ 600 kg/m3 &        
λ = 0.15 W/mK

5 off stainless steel wall ties   
(3.1 mm diameter  - 7.5 mm2 ) 

Air cavity

Celotex CW3055 PIR foil 
faced board 55 mm thick.   
λ = 0.023 W/m.K

55 100 

350 

12.5

Plaster board - fixed into 
position with adhesive on 5 
off wooden spacers
 50 mm x 50 mm x 10 mm 
thick  Plasterboard cut into 
4 quarters to aid removal

CONDITIONING
1) The masonry blocks to be 
conditioned in the hot box lab - 
the weight of a witness sample of 
AAC and brick are being  
monitored to be able to 
determine when they reaches 
moisture equillibrium with the 
laboratory.

2) A moisture probe (inserted 
halfway into the masonry) will 
also be used to measure moisture 
content of the AAC blocks and 
bricks

10

Air cavity

325 

U-value calculated using EN 
ISO 6946 combined method.  
U-value = 0.25 W/m2.K 
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Figure 6   Drawing of Wall 4  - ICF wall with Neopor and steel connectors 

 

65 mm thick
NEOPOR

150 mm thick 2000 kg/m3 

concrete

65 mm thick
NEOPOR

Plastic connectors 
t

Plastic 
connectors

Interior 
side

Exterior 
side

Suggest 5 mm dia holes in shutter 
material for thermocouple wires

Suggest central thermocouple is 
taped to a thin wooden "lathe" - (10 
mm wide x 2 mm thick). - Fix 2 off 
thermocouples within 10 mm of 
each other)

NOTE:- To install the central 
thermocouple, the concrete filling 
must be stopped at the appropriate 
level and the thermocouple on it's 
wooden support lathe laid on the 
surface and brought through the 
side shutter before the rest of the 
concrete is added.

Side thermocouples can be "duct" 
taped to EPS before the former is 
filled with concrete and brought 
through holes in the side shutter. - 
Fix 2 thermocouples within 10 mm 
of each other (not shown) as 
insurance against breakage.

IT IS IMPORTANT THAT THE 
THERMOCOUPLES ARE BROUGHT 
OUT THE "CORRECT SIDE" 
RELATIVE TO THE INTERIOR AND 
EXTERIOR FACES

25 mm 
above the 
join in the 
EPS

596 mm 

1192 ± 3 mm

1192 ± 3 mm

Lifting eye screw socket 
(please supply lifting eyes)

Wood shutter

Lifting eye 
screw socket 

Lifting eye 
screw socket 

Acrylic 
render

Side thermocouples can be "duct" 
taped to EPS before the former is 
filled with concrete and brought 
through holes in the side shutter. - 
Fix 2 thermocouples within 10 mm 
of each other (not shown) as 
insurance against breakage.

T/c in centre 
of grid

150 mm65 mm 65 mm
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Figure 7   Wall 6  - ICF Wall with EPS and plastic connectors 

 
 

65 mm thick
24 kg/m3 EPS

150 mm thick 2400 kg/m3 

concrete

65 mm thick
24 kg/m3 EPS

Plastic connectors 
t

Plastic 
connectors

Interior 
side

Exterior 
side

Suggest 5 mm dia holes in shutter 
material for thermocouple wires

Suggest central thermocouple is 
taped to a thin wooden "lathe" - (10 
mm wide x 2 mm thick). - Fix 2 off 
thermocouples within 10 mm of 
each other)

NOTE:- To install the central 
thermocouple, the concrete filling 
must be stopped at the appropriate 
level and the thermocouple on it's 
wooden support lathe laid on the 
surface and brought through the 
side shutter before the rest of the 
concrete is added.

Side thermocouples can be "duct" 
taped to EPS before the former is 
filled with concrete and brought 
through holes in the side shutter. - 
Fix 2 thermocouples within 10 mm 
of each other (not shown) as 
insurance against breakage.

IT IS IMPORTANT THAT THE 
THERMOCOUPLES ARE BROUGHT 
OUT THE "CORRECT SIDE" 
RELATIVE TO THE INTERIOR AND 
EXTERIOR FACES

25 mm 
above the 
join in the 
EPS

596 mm 

1192 ± 3 mm

1192 ± 3 mm

Lifting eye screw socket 
(please supply lifting eyes)

Wood shutter

Lifting eye 
screw socket 

Lifting eye 
screw socket 

Acrylic 
render

Side thermocouples can be "duct" 
taped to EPS before the former is 
filled with concrete and brought 
through holes in the side shutter. - 
Fix 2 thermocouples within 10 mm 
of each other (not shown) as 
insurance against breakage.

T/c in centre 
of grid

150 mm65 mm 65 mm
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Figure 8    Drawing of Wall 7 - AAC Wall 
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Figure 9    Drawing of Wall 8 - Concrete block wall 

 

 
 
The details of the various components of the seven walls and the thermophysical property 
data used to carry out the various calculations are given in Tables 3 to 9.  

102 45

1200 mm

Expanded polystyrene 
surround panel

Brick (Sand faced flettons)

10 mm thick weak mortar joints.  
Chosen to make dismantling easy 
and made as dry as possible to 
reduce conditioning time.

Lightweight agregate concrete  
Blocks -100 mm thick 
1450  kg/m3 
λ = 0.47 W/mK

5 off stainless steel wall ties   
(3.1 mm diameter  - 7.5 mm2 ) 

Air cavity

Celotex CW3055 PIR foil 
faced board 55 mm thick.   
λ = 0.023 W/m.K

55 100 

350 

12.5

Plaster board - fixed into 
position with adhesive on 5 
off wooden spacers
 50 mm x 50 mm x 10 mm 
thick  Plasterboard cut into 
4 quarters to aid removal

10

Air cavity

325 
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Table 3  Specification of the components of  Wall 1 

 
 
 
Figure 10   Sketch of steel connectors used in ICF walls 

Wall 1 ICF wall Built by Polysteel TT369

Predicted U-value 0.3 W/m2.K
Overall thickness 310 mm Assumes a 10mm gap between EPS & Plasterboard
ACRYLIC Render thickness 9 mm Ceramic floor tile used to simulate Acrylic render

thermal conductivity 0.85 W/m.K CIBSE Guide A - 3-38
density 1900 kg/m3 CIBSE Guide A - 3-38
Specific heat 850 J.kg-1.K-1 CIBSE Guide A - 3-38

EPS thickness 65 mm
both sides density 24 kg/m3

thermal conductivity 0.033 W/m.K
Specific heat 1450 J.kg-1.K-1

Concrete thickness 150 mm 150mm C25/30 standard pour able mix concrete (150mm 
slump, 10mm rounded aggregate) 2400 kg/m3

density 2400 kg/m3

specific heat 1000 J.kg-1.K-1 "Protected" value from CIBSE Guide A
thermal conductivity 1.75 W/m.K "Protected" value from CIBSE Guide A

Plasterboard thickness 12.5 mm Glued on wood blocks 10 mm thick to avoid wet paster
density 700 kg/m3

thermal conductivity 0.21 W/m.K CIBSE Guide A
specific heat 1000 J.kg-1.K-1

Bonding ties Material Steel Steel
diameter See figure 10
number per m2

description of installation
Thermocouple positions On EPS between EPS and render Position of thermocouples (t/cs)  in each plane

On concrete between the concrete and the EPS (Cold side) * All t/cs to be in the same position through the stack
In the centre of the concrete * exactly central in the 1.2 m x 1.2 m face
On concrete between the concrete and the EPS (warm side
On EPS between EPS and air cavity behond plasterboard
On plasterboard between plaster board and air cavity behind it

Special features Two eye bolt sockets caste into the top surface of the concrete to enable the unit to be lifted by crane 
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Table 4   Specification of the components of Wall 2 

 

 
Table 5   Specification of the components in Wall 3 

Wall 3 Standard brick/insulation/AAC wall TT363
Predicted U-value 0.25 W/m2.K
Measured U-value 0.27 W/m2.K
Overall thickness 325 mm

None

Type Sand faced flettons
thickness 102 mm
density 1750 kg/m3

thermal conductivity 0.77 W/m.K CIBSE Guide A
Specific heat 1000 J.kg-1.K-1

Material PIR Celotex CW3055 Foil faced board
thickness 55 mm
density 30 kg/m3 Manufacturers data
Thermal conductivity 0.023 W/m.K Manufacturers data
Specific heat 1400 J.kg-1.K-1 CIBSE Guide A - Table 3.47
thickness 45 mm

(unvented) thermal resistance 0.46 m2.K/W BS EN ISO 6946 (Δθ < 5 K)
The emissivity of the aluminium cladding of the Celotex is 
assumed to be 0.2

type H H Celcon 
thickness 100 mm Manufacturers data
density 600 kg/m3 Manufacturers data
Thermal conductivity 0.15 W/m.K Manufacturers data
Specific heat 1000 J.kg-1.K-1 CIBSE Guide A - Table 3.47

Plasterboard thickness 12.5 mm Glued on wood blocks 10 mm thick to avoid wet paster
density 700 kg/m3

thermal conductivity 0.21 W/m.K Data taken from CIBSE Guide A
Specific heat 1000 J.kg-1.K-1 Data taken from CIBSE Guide A

Thermocouple positions On inside brickwork Position of thermocouples (t/cs)  in each plane
on Celotex surface facing air cavity * All t/cs to be in the same position through the stack
On Celotex surface facing AAC * exactly central in the 1.2 m x 1.2 m face
On warm side of AAC
On inside plasterboard

Render

Brick

Air cavity

AAC blocks

Insulation

Wall 2 Timber wall Built by NPL  TT366
Predicted U-value 0.27 W/m2.K
Overall thickness 308 mm

thickness 14.6 mm
density 500 kg/m3 CIBSE Guide A Table 3.47
thermal conductivity 0.13 W/m.K
specific heat 1600 J.kg-1.K-1

thickness 45 mm
(unvented) thermal resistance 0.46 m2.K/W BS EN ISO 6946 (Δθ < 5 K)

The emissivity of the aluminium cladding of the Celotex is 
assumed to be 0.2

type Glidevale
Glidevale breather membrane - Protect TF200

thickness 9 mm
density 540 W/m.K
thermal conductivity 0.12 kg/m3 CIBSE Table 3.39
Specific heat 1210 J.kg-1.K-1

Material wood 11%
width 44 mm Only the centre stud the outside studs were 22 mm wide
depth 140 mm
distance between centres 600 mm
density 510 W/m.K
thermal conductivity 0.12 kg/m3 CIBSE Table 3.39
specific heat 1380 J.kg-1.K-1

Material Glass fibre 140 mm deep Knauf Dritherm Cavity Slab 32
thickness 140 mm
density n/a
Thermal conductivity 0.032 W/m.K
specific heat 1030 J.kg-1.K-1

Type ? TP Polythene DPM - 250 MU PIFA BLUE

Plasterboard thickness 12.5 mm
density 700 kg/m3

thermal conductivity 0.21 W/m.K
Specific heat 1000 J.kg-1.K-1

Thermocouple positions On inside brick leaf surface Position of thermocouples (t/cs)  in each plane
On Membrane * All t/cs to be in the same position through the stack
On warm side of OSB cladding * exactly central in the 1.2 m x 1.2 m face
On inside of plasterboard

Wood tongue & groove 
cladding

Air cavity

Breather membrane

Not Al backed - mounted on wooden blocks to imitate plaster 
dabs - keeping plasterboard 12 mm from membrane.                  
CIBSE Guide A

Plywood

Stud

Insulation

Vapour control barrier
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Table 6   Specification of the components of Wall 4 

 
 
 
Table 7   Specification of the components of Wall 6 

 

 
 

Wall 6 ICF wall - Built by Polysteel TT370
Predicted U-value 0.22 W/m2.K
Overall thickness 311 mm 301 mm if Plasterboard glued direct to concrete
Acrylic render thickness 9 mm Ceramic floor tile - to simulate Acrylic render

thermal conductivity 0.85 W/m.K CIBSE Guide A - 3-36
density 1900 kg/m3 CIBSE Guide A - 3-36
Specific heat 850 J.kg-1.K-1 CIBSE Guide A - 3-38

EPS thickness 65 mm Manufacturer's data
density 24 kg/m3

thermal conductivity 0.033 W/m.K
Specific heat 1450 J.kg-1.K-1

Concrete thickness 150 mm
density 2400 W/m.K
thermal conductivity 1.7 kg/m3 CIBSE Guide A value

EPS thickness 65 mm Manufacturer's data
density 24 kg/m3

thermal conductivity 0.033 W/m.K
Specific heat 1450 J.kg-1.K-1

Plasterboard thickness 12.5 mm Glued on wood blocks 10 mm thick to avoid wet paster
density 700 kg/m3

thermal conductivity 0.21 W/m.K Data taken from CIBSE Guide A
Specific heat 1000 J.kg-1.K-1 Data taken from CIBSE Guide A

Bonding ties Material Plastic Plastic - for details see figure 11
Thermocouple positions On EPS between EPS and render Position of thermocouples (t/cs)  in each plane

On concrete between the concrete and the EPS (Cold side) * All t/cs to be in the same position through the stack
In the centre of the concrete * exactly central in the 1.2 m x 1.2 m face
On concrete between the concrete and the Plasterboard
On EPS between EPS and air cavity behond plasterboard
On plasterboard between plaster board and air cavity behind it
Two eye bolt sockets caste into the top surface of the concrete to enable the unit to be lifted by crane. 

150mm C25/30 standard pour able mix concrete (150mm 
slump, 10mm rounded aggregate) 2400 kg/m3

Special features

Wall 4 ICF wall Supplied by PolySteel TT371
Predicted U-value 0.28 W/m2.K
Overall thickness 310 mm
Acrylic render thickness 9 mm Ceramic floor tile - to simulate Acrylic render

thermal conductivity 0.85 W/m.K CIBSE Guide A - 3-36
density 1900 kg/m3 CIBSE Guide A - 3-36
specific heat J.kg-1.K-1

Neopor thickness 65 mm Manufacturer's data
density 24 kg/m3

thermal conductivity 0.03 W/m.K
specific heat 1210 J.kg-1.K-1

Concrete thickness 150 mm
150mm C25/30 standard pour able mix concrete (150mm 
slump, 10mm rounded aggregate)

density 2400 kg/m3

Specific heat 1000 J.kg-1.K-1 "Protected" value from CIBSE Guide A
thermal conductivity 1.75 W/m.K "Protected" value from CIBSE Guide A

Neopor thickness 65 mm Neopor
density 24 kg/m3

thermal conductivity 0.03 W/m.K
specific heat 1210 J.kg-1.K-1

Plasterboard thickness 12.5 mm Glued on wood blocks 10 mm thick to avoid wet paster
density 700 kg/m3

thermal conductivity 0.21 W/m.K Data taken from CIBSE Guide A
Specific heat 1000 J.kg-1.K-1 Data taken from CIBSE Guide A

Bonding ties Material Steel Drawing shown in figure 10
diameter ?
number per m2 ?

Thermocouple positions On EPS between EPS and render Position of thermocouples (t/cs)  in each plane
On concrete between the concrete and the EPS (Cold side) * All t/cs to be in the same position through the stack
In the centre of the concrete * exactly central in the 1.2 m x 1.2 m face
On concrete between the concrete and the EPS (warm side
On EPS between EPS and air cavity behond plasterboard
On plasterboard between plaster board and air cavity behind it
Two eye bolt sockets caste into the top surface of the concrete to enable the units to be lifted by craneSpecial features
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Figure 11  Plastic connectors used in ICF wall 

 

 
 
Table 8   Specification of the components of Wall 7 

 
Wall 7 Solid AAC Wall Supplied by APA TT368
Predicted U-value 0.22 W/m2.K
Overall thickness 305 mm
Render thickness 9 mm Ceramic floor tile - to simulate Acrylic render

thermal conductivity 0.85 W/m.K CIBSE Guide A - 3-36
density 1900 kg/m3 CIBSE Guide A - 3-36
Specific heat 850 J.kg-1.K-1 CIBSE Guide A - 3-38

Celatex thickness 80 mm
density 30 kg/m3

thermal conductivity 0.023 W/m.K
Specific heat 1400 Manufacturer's data

Celcon Aircrete thickness 200 mm
block density 600 kg/m3

thermal conductivity 0.15 W/m.K Manufacturer's data
Specific heat 1000

Plasterboard thickness 12.5 mm Glued on wood blocks 10 mm thick to avoid wet paster
density 700 kg/m3

thermal conductivity 0.21 W/m.K Data taken from CIBSE Guide A
Specific heat 1000 J.kg-1.K-1 Data taken from CIBSE Guide A

Thermocouple positions On Insulation between Insulation and render Position of thermocouples (t/cs)  in each plane
On AAC between the AAC and the Insulation (Cold side) * All t/cs to be in the same position through the stack
On AAC between AAC and air cavity behind plasterboard * exactly central in the 1.2 m x 1.2 m face
On plasterboard between plaster board and air cavity behind it

This made up of a 55 mm thick & 25 mm thick Celatex 
insulation glued together (No Nails)
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Table 9   Specification of the components of Wall 8 

 
 

5 DETAILS OF THERMAL PERFORMANCE MEASUREMENTS 

5.1 MEASUREMENT AND ANALYSIS DETAILS – STEADY STATE U-VALUES 
 
The steady state U-value of each wall was measured with the temperature of the warm 
chamber air at 24.5 °C  and the cold chamber air temperature at approximately 3 °C 
 
The wall U-values were determined using the Hot Box apparatus. After thermal equilibrium 
was established the power through the test element was derived from the total power into the 
warm chamber and the power calculated to have transferred through the surround panel. Then 
from the recorded average temperatures of the wall surface, baffle and air, in both the warm 
and cold chambers, the environmental temperature difference was calculated. The U-value 
was then calculated by dividing the density of heat flow rate through the test element by the 
environmental temperature difference across it.   
 
For the purposes of this project additional thermocouples (to the normal thermocouples fixed 
to the outer surfaces) were installed inside all of the walls during their construction. In general 
a thermocouple was attached at every material interface. In the case of the timber wall further 
thermocouples were installed to enable the temperature differences between the 
“homogeneous” part of the wall and in line with the timber studs to be determined. 

Wall 8 Standard brick/insulation/lighweight TT364
agregate block wall

Predicted U-value 0.25 W/m2.K
Overall thickness 342 mm

thickness 9 mm Ceramic floor tile - to simulate Acrylic render
thermal conductivity 0.85 W/m.K CIBSE Guide A - 3-38
density 1900 kg/m3 CIBSE Guide A - 3-38
Specific heat 850 J.kg-1.K-1 CIBSE Guide A - 3-38
Type Sand faced flettons
thickness 102 mm
density 1750 kg/m3 (approximately) - taken from CIBSE Guide A 2006
thermal conductivity 0.77 W/m.K (approximately) - taken from CIBSE Guide A 2006
Specific heat 1000 J.kg-1.K-1

Material PIR Celotex CW3055 Foil faced board
thickness 55 mm
density 30 kg/m3

Thermal conductivity 0.023 W/m.K
Specific heat 1400 J.kg-1.K-1
thickness 45 mm

(unvented) thermal resistance 0.46 m2.K/W BS EN ISO 6946 (Δθ < 5 K)
The emissivity of the aluminium cladding of the Celotex is 
assumed to be 0.2

type Tarmac Hemelite Standard block or equivalent (7.3 N/mm2)
thickness 100 mm
density 1450 kg/m3 (7.3 N/mm2 block)
Thermal conductivity 0.47 W/m.K (7.3 N/mm2 block) Manufacturer's data

Plasterboard thickness 12.5 mm Glued on wood blocks 10 mm thick to avoid wet paster
density 700 kg/m3 (approximately) - taken from CIBSE Guide A 2006
thermal conductivity 0.21 W/m.K (approximately) - taken from CIBSE Guide A 2006
Specific heat 1000 J.kg-1.K-1

Thermocouple positions On Insulation between Insulation and render Position of thermocouples (t/cs)  in each plane
On AAC between the AAC and the Insulation (Cold side) * All t/cs to be in the same position through the stack
On AAC between AAC and air cavity behind plasterboard * exactly central in the 1.2 m x 1.2 m face
On plasterboard between plaster board and air cavity behind it

Built by NPL for           
The Concrete Centre

Aggregate block

Render

Brick

Insulation

Air cavity
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5.2 MEASUREMENT AND ANALYSIS DETAILS – DYNAMIC MEASUREMENTS 

5.2.1 Using the hot chamber power 
 
The dynamic thermal performance measurements were made whilst cycling the Hot Box; 
‘s cold chamber temperature. These were achieved by keeping the air temperature in the 
warm chamber constant at approximately 24.5 °C whilst the air temperature of the cold 
chamber was cycled between 2.4°C and 14.4 °C over a 25 hour period.  
 
During the cycling measurements the total power supplied to the warm chamber was recorded 
once every hour. That total power figure has two components i) the power transferred through 
the surround panel and ii) the power transferred through the wall. Therefore, the power being 
transferred through the surround panel during these cycling measurements had to be 
determined and subtracted from the total. 
 
To determine the power transferred through the EPS surround panel for these dynamic 
measurements, a series of cycling measurements were undertaken with the aperture in the 
surround panel filled with expanded polystyrene.  
 
To derive an equation relating time to power transferred through the EPS surround panel that 
related to a specific measurement of a wall in the surround panel, the time base of the EPS 
measurements was modified to bring the cold air temperature cycles for the wall plus EPS 
into phase with the data for the EPS alone (see Figure 12) 
 
Figure 12 Synchronising the time base of the EPS vs cold air temperature graph to match the 
phase of the Wall + EPS vs cold air temperature graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An equation relating the power through the surround panel for a given cold air temperature of 
this modified data set was then obtained – see Figure 13. 
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Figure 13  Deriving equation relating cold air temperature and power through the test element 
for the surround panel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An equation relating power through the Wall + EPS for a given cold air temperature was also 
derived – see Figure 14. 
 
Figure 14  Equation relating power to cold air temperature for the surround panel (synchronised 
to the phase of Wall 8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The power through the wall alone was then obtained from these two equations – see Figure 15 
 
 

Equation for TT365A - Sync'ed to TT364B 
((Sin((x+ 1.7011)* 0.25)*- 0.9636)+3.7426)
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Equation for TT36G Wall 8 + EPS surround 
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Figure 15  Equation relating power to cold air temperature for Wall 8 and the surround panel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally the energy in watt hours (Wh) required to maintain the warm chamber at 24.4 °C over 
one cycle was calculated by integrating the area under the graph of power against time for one 
cycle. 
 
The power amplitude and time lag between the maximum temperature difference and 
maximum power through the wall was determined from these graphs. 
 
The time lag between the minimum temperature on the cold side and the minimum 
temperature on the warm side was determined by inspection of the data files. 
 

5.2.2 Using the output of a HFM fixed to the wall surface 
 
After the steady state measurement and cycling measurement without the HFM were 
completed the collar guard and wall were removed from the Hot Box apparatus and the HFM 
and guard plates fixed to the warm surface as shown in Figure 16. The HFM was mounted in 
the centre of each wall with thermocouples fixed to the wall beneath it as also shown in 
Figure 16. 
 
The HFM ouput converted to power (W) using the calibration data produced by NPL using 
the 610 mm guarded hot plate apparatus. In this case there was no need to correct for the 
power being transferred through the surround panel. This value however only relates to the 
central 300 mm x 300 mm portion of the test wall. In the case of the timber frame wall (Wall 
2) this was a problem as the HFM was site directly over the crossed studs and so gave quite 
different values from those obtained for the whole wall.  

Net power through walls  -Wall 8 - Brick / PUR / Concrete - Plasterboard TT364B
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Figure 16   Drawing of heat flow meter and guard plates 
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6 RESULTS OF THE THERMAL PERFORMANCE MEASUREMENTS 

6.1 RESULTS OF THE U-VALUE MEASUREMENTS. 
 
These values are shown in Table 10 with the U-values calculated using i) Physibel VOLTRA, 
ii) the EN 6946 method. 
 

6.2 ENERGY (WH) TO KEEP WARM CHAMBER AT 24 °C PER CYCLE. 
 
This value was derived in two ways; i) using the power through the wall determined from the 
hot box power and ii) using the power determined from the output of the 0.3 m x 0.3 m HFM. 
A summary of both these values for each wall are shown in Table 10.  The graphs of power 
through the wall plotted against elapsed time and the cold air temperature plotted against 
elapsed time for Wall 1, Wall 2, Wall 3, Wall 4, Wall 6, Wall 7 and Wall 8 are shown in 
Figures 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28 respectively. 
 

6.3 TIME LAG – MAX TEMP. DIFF. AND MAX. POWER TRANSFER THROUGH 
THE WALL.   

 
This value was derived in two ways; i) using the power through the wall determined from the 
hot box power and ii) using the power determined from the output of the 0.3 m x 0.3 m HFM. 
A summary of both these values for each wall are shown in Table 10.  The graphs of power 
through the wall plotted against elapsed time and the cold air temperature plotted against 
elapsed time for Wall 1, Wall 2, Wall 3, Wall 4, Wall 6, Wall 7 and Wall 8 are shown in 
Figures 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28 respectively. 
 

6.4 TIME LAG BETWEEN THE MIN. COLD TEMP. AND MIN. TEMP. ON THE 
WARM SIDE.  

 
This was difficult to determine accurately as the variation in temperature on the warm side 
was very small. It was not obtained from the graphs but from the tables of data. A summary of 
these values for each wall is shown in Table 10.   
 

6.5 AMPLITUDE OF THE POWER VARIATION RESULTING FROM 
TEMPERATURE CYCLING. 

 
This value was derived in two ways; i) using the power through the wall determined from the 
hot box power and ii) using the power determined from the output of the 0.3 m x 0.3 m HFM. 
A summary of both these values for each wall are shown in Table 10.  The graphs of power 
through the wall plotted against elapsed time and the cold air temperature plotted against 
elapsed time for Wall 1, Wall 2, Wall 3, Wall 4, Wall 6, Wall 7 and Wall 8 are shown in 
Figures 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28 respectively. 
 
 
 

6.6 ROLLING AVERAGE OF U-VALUES DERIVED FROM CYCLING 
MEASUREMENTS. 

 
During the thermal cycling the power through the wall cycles in response to the temperature 
difference variations. During these measurements this power was recorded every hour. Using 
these power values, the instantaneous thermal transmittance (or in the case where the output 
of the HFM was used, the instantaneous thermal conductance) was calculated. The rolling 
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average of these instantaneous values approaches the steady state U-value after a sufficient 
period of time. This value was derived in two ways; i) using the power through the wall 
determined from the hot box power and ii) using the power determined from the output of the 
0.25 m x 0.25 m HFM. The graphs showing the rolling average thermal conductance plotted 
against elapsed time are shown in Figures 29 to 35. 
 
 

6.7 TEMPERATURE PROFILES THROUGH THE WALLS DURING CYCLING 
 
The measured temperature profiles of Wall 1, Wall 2, Wall 3, Wall 4, Wall 6, Wall 7 and 
Wall 8 are shown in Figures  36 to 53. 
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Table 10  Measurement and calculations summary results table 

 

Wall 
number

Test 
number Wall description

Apparatus 
or 

calculation 
method

U-value - 
Meas & 

Calc.

Energy per   
25 hr cycle 
over 12 °C    
(measured)   

Amplitude   
of variation  

in power    
Meas. 

Lag - 
Maximum 

temp diff to 
max power 

Meas.

Time 
constant of 

walls 
calculated 
with Voltra

Temp      
lag        

time

Ratio -  
Energy  
U-value 

(W/m2.K)  (Whr) (Watts) (hrs) (hrs) (hrs) (m2.K.h)
Hot box 182 0.36 21.4 27.4 583
HFM 178 0.24 10.0 571
Voltra 0.252 0.12 12.0
EN 6946
ISO 13786 8.2
Hot box 0.266 153 2.38 4.8 2.5 576
HFM 202 3.10 7.0 760
Voltra 0.230 1.52 4.0
EN 6946
ISO 13786 3.8
Hot box 0.279 157 0.65 11.0 9 562
HFM 142 0.70 10.8 509
Voltra 0.249 1.06 10.0
EN 6946 0.268
ISO 13786
Hot box 0.285 170 1.65 11.0 6.0 595
Voltra 0.263 1.57 9.5
EN 6946 0.276
Hot box 0.283 170 0.32 22.3 24.3 601
HFM 168 0.26 10.3 594
Voltra 0.269 0.18 10.0
EN 6946
ISO 13786 8.3

WALL 5 NOT BUILT
Hot box 0.279 159 0.40 21.5 24.5 571
HFM 157 0.16 10.2 561
Voltra 0.232 0.12 10.0
EN 6946
ISO 13786 8.2
Hot box 0.216 123 0.33 16.6 12.3 569
HFM 118 0.39 12.5 545
Voltra 0.176 0.37 10.0
EN 6946
ISO 13786 10.3
Hot box 0.297 167 0.47 11.8 10.0 564
HFM 160 0.75 10.6 540
Voltra 0.280 0.51 11.0 11.0
EN 6946 0.302
ISO 13786 160 0.75
Hot box 0.321 182 1.03 9.0 7.5 568
EN 6946 0.312

ICF - 9 mm thick ceramic floor tiles instead of Acrylic render / 65 mm 
NEOPOR Insulation on both sides & 150 mm thick 2400 kg/m3 concrete / 
plaster board (on 12 mm thick wood blocks) & STEEL  connectors - BUILT 
BY POLYSTEEL

WALL 6 TT370

WALL 2 TT366
Timber frame - 15 mm thick tongue & groove wood cladding. Wood studs 
(11% wood) 44 mm thick & 140 mm deep. Knauf Timber Slab glass fibre 
insulation between the studs & plaster board. - BUILT BY NPL

WALL 1 TT369

ICF - 9 mm thick ceramic floor tiles instead of Acrylic render / 65 mm 24 
kg/m3 EPS on both sides & 150 mm thick 2400 kg/m3 concrete / plaster 
board (on 12 mm thick wood blocks) & STEEL connectors  - BUILT BY 
POLYSTEEL) 

WALL 7 TT368
APA wall - 15 mm thick ceramic floor tiles instead of Acrylic render / 80 mm 
insulation (55 mm + 25 mm) Celotex foil faced PIR board/ 200 mm thick 
AAC block / air cavity / plasterboard on 12 mm thick wood blocks.

TT363

"Standard" wall - 102 mm Brick / 45 mm air cavity / 55 mm Celotex 
CW3055 foil faced PIR board/ 100 mm AAC / 10 mm air cavity / 12 mm 
plasterboard on 12 mm thick wood blocks/ 3 off st.st. wall ties    - BUILT BY 
NPL

WALL 4 TT371

WALL 3

Standard wall - 102 mm Brick / 45 mm air cavity / 55 mm foil faced PIR  / 
100 mm AAC / 10 mm air cavity / NO plasterboard  - BUILT BY NPL

ICF - 15 mm thick ceramic floor times instead of Acrylic render / 65 mm 24 
kg/m3 EPS on both sides & 150 mm thick 2400 kg/m3 concrete / plaster 
board (on 12 mm thick wood blocks) & PLASTIC connectors  -  BUILT BY 
POLYSTEEL

WALL 8 TT364

Concrete Centre - Brick/cavity/ 55 mm Celotex CW3055 foil faced PIR 
board /lightweight agregate concrete/ air cavity / 12 mm plasterboard  - 
BUILT BY NPL

Concrete Centre - Brick/cavity/55 mm foil faced PIR board /lightweight 
agregate concrete/ air cavity / NO plasterboard

98.0

7.0

8.7

6.3

110

106

24.4

15.0

0.312

Protect – Commercial 
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Figure 17   Wall 1 – Power through wall (hot box) and cold air temperature vs time. 

 
 
Figure 18   Wall 1 – Power through wall (HFM) and cold air temperature vs time 
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Figure 19  Wall 2 - Power through wall (hot box) and cold air temperature vs time  

 
 
Figure 20  Wall 2 - Power through wall (HFM) and cold air temperature vs time 
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Figure 21  Wall 3 - Power through wall (hot box) and cold air temperature vs time  

 
Figure 22  Wall 3 - Power through wall (HFM) and cold air temperature vs time 
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Figure 23 Wall 4 -  Power through wall (hot box) and cold air temperature vs time 

 
 
Figure 24  Wall 4 -  Power through wall (HFM) and cold air temperature vs time 
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Figure 25  Wall 6 - Power though wall (hot box) and cold air temperature vs time 

 
 
Figure 26   Wall 6 - Power though wall (HFM) and cold air temperature vs time 
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Figure 27   Wall 7 - Power through wall (hot box) and cold air temperature vs time  

 
 
 
Figure 28   Wall 7 - Power through wall (HFM) and cold air temperature vs time 
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Figure 29   Wall 8 - Power through wall (hot box) and cold air temperature vs time 

 
 
Figure 30    Wall 8 - Power through wall (HFM) and cold air temperature vs time 

 

 

Net power through walls  -Wall 8 - Brick / PUR / Concrete - Plasterboard TT364B

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

72 96 120
Elapsed time (hrs)

Po
w

er
 th

ro
ug

h 
w

al
l (

W
at

ts
)

0

2

4

6

8

10

12

14

16

C
old air tem

perature ( oC
)

Power throughWall 8 with PB alone (Watts) Cold air temp - TT364B

Net power through walls  -Wall 8 - Brick / PUR / Concrete - Plasterboard TT364D + FIW/HFM

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

48 72 96
Elapsed time (hrs)

Po
w

er
 th

ro
ug

h 
w

al
l (

W
at

ts
)

0

2

4

6

8

10

12

14

16

C
old air tem

perature ( oC
)

Power throughWall 8 with PB from HFM Cold air temp - TT364D

NPL Report MAT (RES) 124 Protect – Commercial 



Protect – Commercial NPL Report MAT (RES) 124 

33 

Figure 31   Wall 1 (TT369) - Rolling average thermal conductance 

 
 
Figure 32   Wall 2 (TT366) - Rolling average thermal conductance 

 

TT369 - Wall 1 - Rolling average thermal conductance

0.3

0.35

0.4

0.45

0.5

200 224 248 272 296 320 344 368

Elapsed time (hours)

Th
er

m
al

 c
on

du
ct

an
ce

 (W
/m

2 .K
)

Rolling average thermal conductance (hot box)
Mean rolling average conductance (Hot box)
Rolling average thermal conductance (HFM)
Mean rolling average conductance (HFM)
Steady state conductance

TT366 - Wall 2 - Rolling average thermal conductance

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0 24 48 72 96 120

Elapsed time (hours)

Th
er

m
al

 c
on

du
ct

an
ce

 (W
/m

2 .K
)

Rolling average thermal conductance (hot box)
Mean rolling average conductance (Hot box)
Steady state conductance
Rolling average thermal conductance (HFM)
Mean rolling average conductance (HFM)



     
 

34 

Figure 33  Wall 3 (TT363) -b Rolling average thermal conductance 

 
Figure 34   Wall 4 (TT371) - Rolling average thermal conductance 
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Figure 35   Wall 6 (TT370)   - Rolling average thermal conductance 

 
 
Figure 36   Wall 7 (TT368)  - Rolling average thermal conductance 
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Figure 37   Wall 8 (TT364)  - Rolling average thermal conductance. 
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Figure 38   Wall 1 (TT369) - Temperature profiles 
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Figure 39   Wall 2 (TT366) – Thermocouple positions – Insulation & Studding stacks 
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Figure 40   Wall 2 - Temperature profile - Insulation stack 
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Figure 41   Wall 2 - Temperature profiles - Studding stack 
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Figure 42   Wall 3 + Plaster board (TT363)  - Thermocouple positions 
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Figure 43  Wall 3 + Plasterboard Temperature profiles 
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Figure 44  Wall 3 - No Plasterboard - Thermocouple positions
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Figure 45  Wall 3 - No Plasterboard -Temperature profiles 
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Figure 46   Wall 4 (TT371)  - Thermocouple positions for temperature profiles 
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Figure 47   Wall 4 (TT371)  Temperature profiles 
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Figure 48   Wall 6 (TT370) - Thermocouple positions 
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Figure 49   Wall 6 (TT370) - Temperature profiles 
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Figure 50   Wall 7 (TT368) - Thermocouple positions 
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Figure 51   Wall 7 (TT368)  - Temperature profiles 

 

JIP Wall 7- AAC Wall + PB
- Cycling from 2.5 oC to 14.5 oC over 24 hrs

1.0

6.0

11.0

16.0

21.0

26.0

48 72 96

Elapsed time (hrs)

Te
m

pe
ra

tu
re

 (o C
)

Cold air T

[6] Cold surface of 
tiles 

[5] Cold surface of
Celotex

[4] Hot surface of
Celotex

[3] Hot surface of
AAC

[2] Cold surface of
PB

[1] Hot surface of
PB

Hot air T

JIP Wall 7- AAC Wall + PB
- Cycling from 2.5 oC to 14.5 oC over 24 hrs

19.0

20.0

21.0

22.0

23.0

24.0

25.0

48 72 96

Elapsed time (hrs)

Te
m

pe
ra

tu
re

 (o C
)

[4] Hot surface of
Celotex

[3] Hot surface of
AAC

[2] Cold surface
of PB

[1] Hot surface of
PB

Hot air T

JIP Wall 7- AAC Wall + PB
- Cycling from 2.5 oC to 14.5 oC over 24 hrs

1.0

6.0

11.0

48 72 96

Elapsed time (hrs)

Te
m

pe
ra

tu
re

 (o C
)

Cold air T

[6] Cold surface
of  tiles 

[5] Cold surface
of Celotex

NPL Report MAT (RES) 124 Protect – Commercial 



Protect – Commercial NPL Report MAT (RES) 124 

51 

Figure 52  Wall 8 + Plasterboard - Thermocouple positions 
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Figure 53  Wall 8 + Plasterboard - Measured temperature profiles 
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Figure 54   Wall 8 (TT368)  - Thermocouple positions 
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Figure 55   Wall 8 (TT368) – No plasterboard - Temperature profiles 
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7 RESULTS OF THE THERMAL PERFORMANCE CALCULATIONS 

7.1 Overview of modelling methodology 
 
The thermal performance of the walls described in Section 4.3 were modelled by Dr Chris 
Sanders of Glasgow Caledonian University. These models have not attempted to replicate the 
NPL measured results exactly, but have been used to examine the differences in performance 
between the different wall types given temperature inputs similar to those used during the 
measurements. 
 
Each wall was modelled with the non-steady state, three-dimensional thermal analysis 
software, VOLTRA, which is one of the Physibel suite of programmes. In most cases the 
walls were modelled as one metre square sections consisting of a series of parallel material 
layers, each with a specified, thickness, thermal conductivity, density and specific heat; heat 
flow was therefore assumed to be one dimensional.  The model of the timber framed wall, 
wall 2, included representative timber studs and battens supporting the external timber 
cladding, which caused multidimensional heat flow.  This model was larger, 1.288 metres x 
1.288 metres to accommodate these features. 
 
Standard internal and external heat transfer coefficients, 7.7 W/m2K and 25 W/m2K 
respectively, were used. 
  
 
7.2 Thermal performance parameters modelled.  
 
For each wall the following thermal properties were modelled. 
 

i) Steady state U-value  
The model was run with constant inside and outside temperatures of 22°C and 9°C to give 
a constant heat flow: Q0 Watts.  The U-value of the wall is then calculated from U = Q0 / 
A·ΔT  W/m2K, where ΔT is the imposed temperature difference in °C and A is the area of 
the model in m2 

 
ii) Time constant to a step change in temperature 

The model was run with constant internal and external temperatures of 22°C and then the 
external temperature dropped instantaneously to 9°C.  The heat flow into the internal 
surface, Q(t) then rises to the steady state value, Q0, as shown in Figure 56. Then if we 
assume that the heat flow into wall is responding to the step change as: 

     

Where T is the time in hours from the change and  is the time constant in hours. 
Plotting loge(Q0 – Q) against T will give a straight line with slope -1/ , as shown in 
Figure 57, which gives a time constant for the timber framed wall as 1/0.143 = 7.0 hours. 

 
iii) Response to sinusoidal change in external temperature  

In this case, replicating the NPL test, the internal temperature is kept constant at 22°C and 
the external temperature is fluctuated sinusoidally, with a mean of 9°C, an amplitude of 
±6 °C and a period of 24 hours, as shown in Figure 58. 



     
 

56 

 
Figure 56  Response of timber framed wall to step change in external temperature 

 

 

Figure 57   Plot of log(Qo-Q(t)) against time for the timber framed wall. 
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Figure 58  Plot of constant internal and sinusoidal external temperatures 

 

 
 
 
The outputs from these simulations have been used to carry out two sorts of analysis: 
 

a) plotting the hourly values of heat flow into the internal surface of the wall  and the 
temperature difference across the wall against time, as shown in Figure 59, gives the 
number of hours that the heat flow lags behind the temperature difference and also the 
amplitude of the daily cycle of heat flows into the wall.  

 
b) An instantaneous U-value can be calculated by dividing the heat flow by the 

temperature difference as shown in Figure 60; this fluctuates widely because the heat 
flow is out of phase with the temperature difference.  However a cumulative average 
(rolling average) of the U-values settles down to a reasonably precise value after 10 
days, as shown in Figure 61.  This technique is used in analysing in-situ U-value 
measurements.  

 
 



     
 

58 

 
Figure 59  Timber wall - Temperature differences and heat flows - cycling from 3°C  to  15°C 
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Figure 60   Instantaneous U-value for timber framed wall 

 
 
 
Figure 61  Rolling average U-value for timber framed wall 
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7.3 Details of the  heat transfer modelling for each wall 

7.3.1 Wall 1 ICF – EPS insulation and steel ties 
Table 11  Details of materials in Wall 1 

 

Material 
Width 

mm 
Conductivity 

W/m·K
Density

kg/m3
Specific Heat  

J/kg·K 
Plasterboard  12.5 0.21 700 1000 
Cavity  10 0.067 1.2 1000 
EPS 65 0.034 24 1450 
Concrete  150 1.75 2400 1000 
EPS 65 0.034 24 1450 
Render 9 0.85 1900 850 
Steel ties  3  50 7800 480 
 
Steel ties -  Assumed to be 3 mm dia. at 150mm centres in both directions, penetrating 
53 mm into the insulation on both sides. 
 

Figure 62  Wall 1 - Model and boundary conditions 

 

 

Steel ties 

 
Model area  = 1.192 * 1.192 = 1.42m2 

 

Steady state Ti=22°C, Te = 9°C   Q = 4.65 W  
 
U = 0.252 W/m2K 
 
Step change time constant = 98.0 hours 
 
Sinusoid time lag = 2 hours 
 
Heat flow amplitude = 0.16 W 
 
Cumulative U-value = 0.252 W/m2K 
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Figure 63  Wall 1 - Heat flow with step change of external temperature from 22°C to 9°C 

 
 
Figure 64  Wall 1 - Plot of log(Qo-Q(t)) against time. 
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Figure 65  Wall 1 – Heat flow - external sinusoidal temperature, internal temperature constant. 

 
 
Figure 66  Wall 1 - Rolling average U-value 
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7.3.2 Wall 2 – Timber frame with 140 mm mineral wool insulation 
Table 12  Details of materials in Wall 2 

 
 
Material 

Width 
mm 

Conductivity 
W/m·K

Density
kg/m3

Specific Heat 
J/kg·K

Plasterboard  12.5 0.21 700 930
Rockwool 140 0.032 40 840
Plywood 12 0.12 600 1880
50mm cavity 50 0.273 1.2 1000
Timber 15 0.13 700 2070
 
Figure 67  - Wall 2 - Model & boundary conditions 

 
Figure 68  Wall 2 - heat flow with to step change of external temperature from 22°C to 9°C 

 

 
Model area  = 1.288 * 1.288 = 1.66m2 

 

Steady state Ti=22°C, Te = 9°C   Q = 4.85 W  
 
U = 0.230 W/m2K 
 
Step change time constant = 7.0 hours 
 
Sinusoid time lag =4 hours 
 
Heat flow amplitude = 1.52 W 
 
Cumulative U-value = 0.230 W/m2K 
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Figure 69   Wall 2 - Plot of log(Qo-Q(t)) against time 

 
 
Figure 70  Wall 2 - Heat flow - external sinusoidal temperature, internal temperature constant. 
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Figure 71  - Wall 2 - Rolling average U-value 

 

 
 
 
 
Wall 3 – Brick – PIR – AAC 
 
Table 13  Details of materials in Wall 3 

 

Material 
Width 

mm 
Conductivity 

W/m·K
Density

kg/m3
Specific Heat 

J/kg·K
Plasterboard  12.5 0.21 700 1000
Cavity  10 0.067 1.2 1000
Block 100 0.15 600 1010
PUR 55 0.023 30 1400
Cavity  45 0.102* 1.2 1000
Brick  102 0.77 1750 1000
 
 
[*] The emissivity of the foil faced PIR is assumed to be 0.2 
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Figure 72  Wall 3 - Model and boundary conditions 

 

 
Figure 73   Wall 3 - Heat flow with step change of external temperature from 22°C to 9°C 

 

 

 
Model area  = 1.0 * 1.0 = 1.0 m2 

 

Steady state Ti=22°C, Te = 9°C, Q = 3.242 
W  
 
U = 0.249 W/m2K 
 
Step change time constant = 8.65 hours 
 
Sinusoidal time lag = 10 hours 
 
Heat flow amplitude = 0.82 W 
 
Cumulative U-value = 0.249 W/m2K 
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Figure 74  Wall 3 - Plot of log(Qo-Q(t)) against time 

 

 
 
Figure 75  Wall 3 – Heat flow - external sinusoidal temperature, internal temperature constant. 

 

 

 

 



       
 

68 

Figure 76  Wall 3 - Rolling average U-value 

 

 
 

7.3.3 Wall 3 with plasterboard removed 
 
Table 14   Details of materials in Wall 3 without plasterboard 

 

Material 
Width 

mm 
Conductivity 

W/m·K
Density

kg/m3
Specific Heat 

J/kg·K
Block 100 0.15 600 1010
PUR 55 0.023 30 1400
Cavity  45 0.102* 1.2 1000
Brick  102 0.77 1750 1000
 

[*] Emissivity of PIR foil face assumed to be 0.2 
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Figure 77  Wall 3 without plasterboard - model and boundary conditions 

 

 

 
Figure 78  Wall 3 – No plasterboard  - Heat flow with step change of external temperature from 
22°C to 9°C 

 

 

 
Model area  = 1.0 * 1.0 = 1.0 m2 

 

Steady state Ti=22°C, Te = 9°C, Q = 3.420 W  
 
U = 0.263 W/m2K 
 
Step change time constant = 6.35 hours 
 
Sinusoidal time lag = 9.5 hours 
 
Heat flow amplitude = 1.17 W 
 
Cumulative U-value = 0.263 W/m2K 

 

Heat flow into wall 3 with no plasterboard in response to step change of external
temperature from 22°C to 9°C  
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Figure 79  Wall 3 no plasterboard - Plot of log(Qo-Q(t)) against time 

 

 
 
Figure 80 - Wall 3 no plasterboard - Heat flow with external sinusoidal temperature, internal 
temperature constant. 
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Figure 81  Wall 3 - no plasterboard - rolling average U-value. 

 

 
 

7.3.4 Wall 4 – ICF wall – Neopor & Steel connectors 
 
Table 15  Details of materials in Wall 4 

 

Material 
Width 

mm 
Conductivity 

W/m·K
Density

kg/m3
Specific Heat  

J/kg·K 
Plasterboard  12.5 0.21 700 1000 
Cavity  10 0.067 1.2 1000 
Neopor 65 0.03 20 1400 
Concrete  150 1.75 2400 1000 
Neopor 65 0.03 20 1400 
Render 9 0.85 1900 850 
Steel ties 3  0.20 7800 480 
 
 
Steel ties were assumed to be 3 mm dia. at 150mm centres in both directions, penetrating 
53 mm into the insulation on both sides as steel ties in wall 1. 
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Figure 82  Wall 4 - model details and boundary conditions 

 
 
Model area  = 1.192 * 1.192 = 1.42m2 

 

Steady state Ti=22°C, Te = 9°C, Q = 
4.168 W  
 
U = 0.225 W/m2K 
 
Step change time constant = 109.8 
hours 
 
Sinusoidal time lag = 10 hours 
 
Heat flow amplitude = 0.13 W 
 
Cumulative U-value = 0.227 W/m2K 

 
 
Figure 83  Wall 4  Heat flow with  step change of external temperature from 22°C to 9°C 
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Figure 84  Wall 4 - Plot of log(Qo-Q(t)) against time 

 
 
Figure 85  Wall 4 - Heat flow - external sinusoidal temperature, internal temperature constant. 
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Figure 86   Wall 4 - Rolling average U-value 

 

 
 
 

7.3.5 Wall 6 – ICF wall  - EPS & Plastic connectors 
 
Figure 87  Details of the materials used in Wall 6 

 

Material 
Width 

mm 
Conductivity 

W/m·K
Density

kg/m3
Specific Heat 

J/kg·K
Plasterboard  12.5 0.21 700 1000
Cavity  10 0.067 1.2 1000
EPS 65 0.034 24 1450
Concrete  150 1.7 2400 930
EPS 65 0.034 24 1450
Render 10 0.85 1900 850
Plastic  ties  3 square 0.20 1400 1470
 
Plastic ties assumed to be 3mm square at 150mm centres in both directions, penetrating 53 
mm into the insulation on both sides as steel ties in wall 1.   
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Figure 88   Wall 6 - model details and boundary conditions 

 

 
Figure 89  - Wall 6 heat flow with a step change of external temperature from 22°C to 9°C 

 

 
 
 
 

 

 
Model area  = 1.192 * 1.192 = 1.42m2 

 

Steady state Ti=22°C, Te = 9°C, Q = 4.30 W  
 
U = 0.233 W/m2K 
 
Step change time constant = 106.4 hours 
 
Sinusoidal time lag = 10 hours 
 
Heat flow amplitude = 0.13 W 
 
Cumulative U-value = 0.233 W/m2K 
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Figure 90  Wall 6 - Plot of log(Qo-Q(t)) against time 

 
 
Figure 91  Wall 6 - Heat flow - external sinusoidal temperature, internal temperature constant. 
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Figure 92  Wall 6 - Rolling average U-value 

 

 
 

7.3.6 Wall 7 – AAC / PIR / Plasterboard 
 
Table 16  Details of the materials used in Wall 7 

 

Material 
Width 

mm 
Conductivity 

W/m·K
Density

Kg/m3
Specific Heat 

J/kg·K
Plasterboard  12.5 0.21 700 1000
Cavity  10 0.067 1.2 1000
Concrete  200 0.11 600 1000
Insulation  80 0.023 30 1400
Render 9 0.85 1900 850
 

 



     
 

78 

Figure 93  Wall 7 Model details and boundary conditions 

 
Figure 94  Wall 7 - Heat flow with step change of external temperature from 22°C to 9°C 

 

 
 

 
Model area  = 1.0 * 1.0 = 1.00m2 

 

Steady state Ti=22°C, Te = 9°C   Q =  2.286 W  
 
U = 0.176  W/m2K 
 
Step change time constant = 14.9 hours 
 
Sinusoid time lag =10 hour 
 
Heat flow amplitude = 0.82 W 
 
 
Cumulative U-value = 0.1.76 W/m2K 
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Figure 95   Wall 7 - Plot of log(Qo-Q(t)) against time 

 
 
Figure 96  Wall 7 - Heat flow -external sinusoidal temperature, internal temperature constant 
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Figure 97  Wall 7 - Rolling average U-value 

 

 
 

7.3.7 Wall 8 – Brick / PIR / lightweight aggregate blocks / plasterboard 
 
Table 17   Details of materials in Wall 8 

 

Material 
Width 

mm 
Conductivity 

W/m·K
Density

Kg/m3
Specific Heat 

J/kg·K
Plasterboard  12.5 0.21 700 1000
Cavity  10 0.067 1.2 1000
Block 100 0.47 1450 1000
Insulation  55 0.023 30 1400
Cavity 45 0.102* 1.2 1000
Brickwork 102 0.77 1750 1000
Render 9 0.3 1900 850
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Figure 98   Details of the model and boundary conditions 

 

 
 
Figure 99  Wall 8 - Heat flow with a step change of external temperature from 22°C to 9°C 

 

 
 
 

 

 
Model area  = 1.0 * 1.0 = 1.00m2 

 

Steady state Ti=22°C, Te = 9°C   Q = 3.65 W  
 
U = 0.280  W/m2K 
 
Step change time constant = 15.0 hours 
 
Sinusoid time lag =11 hour 
 
Heat flow amplitude = 0.51 W 
 
Cumulative U-value = 0.280 W/m2K 
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Figure 100  Wall 8 - Plot of log(Qo-Q(t)) against time 

 

 
 
Figure 101   Wall 8 - Heat flow - external sinusoidal temperature, internal temperature constant 
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Figure 102   Wall 8 - Rolling average U-value 

 

 
 

7.4 Summary of heat transfer modelling results. 
 
The results from the above calculations are summarised in Table 18 and the relevant values 
included in Table 10. 
 
Table 18  Summary of heat transfer modelling results 

Wall 
Steady state   

U-value 
W/m2K 

Step change 
time constant 

Hours 

Sinusoidal 
time lag 
Hours 

Heat flow 
amplitude 

W 

Cumulative 
U-value 
W/m2K 

1: ICF Polysteel 0.252 98.0 12 0.16 0.252 

2: Timber framed  0.230 7.0 4 1.52 0.230 

3: Brick, PIR & AAC 
& plasterboard 0.249 8.6 10 0.82 0.249 

3: Brick, PIR & AAC  
- No plasterboard 0.263 6.4 9.5 1.17 0.263 

4: ICF Polysteel  0.269 91.7 10 0.18 0.269 

6: Polysteel  0.232 106.3 10 0.13 0.232 

7: AAC / Celatex / 0.176 14.9 10 0.82 0.176 

8: Brick/Insulation/ 
light aggregate 0.280 15.0 11 0.51 0.280 
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7.5 Details of the temperature profile modelling 

7.5.1 Overview of temperature profile modelling 
 
Modelling the temperature profiles has been carried out for walls 3 & 8. That modelling  
concentrated on replicating the temperatures at the interfaces between materials measured in 
the tests at NPL, given the ‘hot’ and ‘cold’ air temperatures recorded at NPL.  Material 
property data have been taken from the information provided supplemented with further 
information from Anderson1. 
 
Air cavities have been assigned an equivalent thermal conductivity depending on their width 
and the thermal resistance derived from the EN ISO 6946 rules, taking account of the surface 
emissivities. 
 
The standard EN ISO 6946 internal and external surface resistances were assumed, i.e: 
 ‘Hot’ Rsi = 0.13 m2K/W, ‘Cold’ Rse = 0.04 m2K/W.   
 
The models were generated with Voltra and were made up of 1 metre square wall sections, 
consisting of a series of parallel layers.  No account was taken, at this stage, of bridging due 
to mortar, wall ties or timber studs behind the plasterboard.   
 

7.5.2 Material properties used for Walls 3 and 8 
Table 19  Material properties for Wall 3 

thickness  102 Mm Sand faced flettons 
Density 1750 kg/m3   
Specific heat 850 J/kgK Voltra Database 

Brick 
   
  thermal conductivity 0.77 W/m.K CIBSE Guide A 

thickness  45 mm   
density 1.2 kg/m3 Anderson 
Specific heat 1000 J/kgK Anderson 

Air cavity 
  
  
   thermal conductivity 0.102 W/m.K 6946 rules  e=0.2 on one side 

thickness 55 mm Celotex CW3055 Foil faced  
density 30 kg/m3   
Specific heat 1470 J/kgK Anderson 

Insulation 
  
   Thermal conductivity 0.023 W/m.K Manufacturers data 

thickness 100 mm Celcon  
density 600 kg/m3   
Specific heat 1010 J/kgK Voltra database 

AAC blocks 
  
   Thermal conductivity 0.15 W/m.K Manufacturers data 

thickness  10 mm   
density 1.2 kg/m3 Anderson 
Specific heat 1000 J/kgK Anderson 

Air cavity 
   
  
  thermal conductivity 0.067 W/m.K 6946 rules  e=0.9 on both sides  

thickness  12.5 mm  
density 700 kg/m3 Data taken from CIBSE Guide A 
Specific heat 1000 J.kg-1.K-1 Data taken from CIBSE Guide A 

Plasterboard 
   
  
  thermal conductivity 0.21 W/m.K Data taken from CIBSE Guide A 
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Table 20  Material properties for Wall 8 

 
Aggregate block type     Celcon  

thickness 100 mm   
density 1450 kg/m3   
Specific heat 910 J/kgK Voltra database 

     Thermal conductivity 0.47 W/m.K Manufacturers data 
 
 

7.5.3 Results of the temperature profile modelling of walls 3 & 8 
 
The temperatures of the various material interfaces that were measured have also been 
simulated using Voltra for Wall 3 both with and without the plasterboard and for Wall 8 with 
plasterboard. The results are shown below in Figure 103, Figure 104 and Figure 105. 
 
Figure 103  Wall 3 with Plasterboard – calculated temperature profiles 
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Figure 104  Wall 3 No plasterboard – calculated temperatures profiles. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 105   Wall 8 + plasterboard – calculated temperatures 
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8 DISCUSSION OF THE MEASURED AND CALCULATED VALUES 

 

8.1 SUMMARY OF PROPERTIES MEASURED AND CALCULATED 
 
The following properties were derived in one or more of the following ways: 

i) from the total measured power into the warm chamber of the Hot Box apparatus by 
deducting the power transferred through the EPS surround panel. 

 
ii) from the power through the walls that was measured with the 250 mm x 250 mm 

calibrated heat flow meter. 
 

 
iii) Calculated using the Physibel Voltra 3D FEA dynamic software: 

 
a) Energy (Wh) required maintaining the temperature of the warm chamber air 

temperature at 24 °C over one complete cycle.  
 

b) Time lag between the maximum temperature difference between the cold chamber 
and warm chamber and the resulting maximum power transfer through the wall.  

 
c) Amplitude of the variation in power transfer through the test element caused by the 

temperature cycling of the cold chamber.  
 
d) Time lag between the minimum cold face surface temperature (the driver) and the  

minimum hot face surface temperature (responding to the cold face temperature). 
Note: the fluctuation in the hot face temperatures is very small. 

 
e) The steady state U-value of the wall using the procedures specified in 

BS EN ISO 8990.    
 
The values of parameters a, b, c and d are shown in Table 21 which compares the results 
derived in the different ways.. 
 
 
The method of using the power supplied to the hot chamber is intrinsically superior to using 
the power measured by the HFM because the power through the whole of the wall is being 
measured not just through the small portion of the wall covered by the HFM. The method of 
extracting the power through the wall from the total power being transferred through the wall 
plus the EPS surround panel is quiet complex for the cycling measurements. 
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Table 21 Values of Energy, power lag, temperature lag and power amplitude 
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Figure 106  Comparison between energy derived from hot-box power and HFM power 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 107  Comparison between lag times derived from hot-box, HFM and Voltra powers 
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Figure 108  Comparison between amplitude of power fluctuations Hot-box, HFM & Voltra 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.2 ENERGY USED PER TEMPERATURE CYCLE  
 
The values of energy (Wh) per oscillation period needed to sustain a constant warm chamber 
temperature are approximately the same when measured directly from the hot chamber power 
and by the HFM fixed to the wall surface. The agreement between the values of this 
parameter by the two measurement methods was very good (see Figure 106). Except for 
Wall 2, the differences in the Wh values obtained by the different methods range from 1.5% 
to 9.4%. The exception is the timber frame wall where the HFM was sited directly over the 
central junction of studs, so the heat flowing through that portion of the wall would be 
expected to be significantly higher than the whole wall (which it is).  
 
The good agreement between the two methods may be influenced by the fact that the 
amplitude of the power fluctuations is small compared to the mean power.  
 
The energy required to keep the warm chamber at 24.4 0C whilst the cold chamber was cycled 
for one complete cycle (measured in Wh) was plotted against U-value to see if those two 
properties values were correlated. The quality of the fit shown in Figure 109 would indicate 
that they are correlated. 
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Figure 109  U-value vs Energy per cycle 

 
 

8.3 TIME LAG BETWEEN MAXIMUM TEMPERATURE DIFFERENCE AND 
MAXIMUM POWER 

 
The lag times between the maximum temperature difference between the hot and cold 
chambers and the maximum power through the walls are shown in Figure 107. The variation 
in values that were modelled and measured with the HFM with those derived from the hot box 
power, for the high mass walls, is quiet marked. The heat flow meter power and VOLTRA 
derived values seem almost constant at around 10 hours for all the walls except the timber 
frame wall when the value drops to 7 hours whereas the values derived from the hot box 
power for walls 1, 4, 6 and 7 are nearly double that value. The reasons for this discrepancy 
have not been identified. It could be that the methodology described in Section 5.2.1 for 
deducting the heat transfer through the surround panel is very sensitive the thermal mass of 
the wall, although these values for Walls 3 and 8 which are fairly high mass are in quiet good 
agreement.  Wall 7, the solid AAC wall, showed a difference in these values less than for the 
ICF walls but worse than for the Brick walls. The values derived from the hot-box power also 
are comparable with the values modelled for walls 2 and for wall 3 with no plaster board. 
 
It is interesting to note however that the lag time between the minimum cold surface 
temperature and the minimum hot surface temperature match more closely the power lag 
times derived from the hot box power.  
 
To summarise; the values derived from the hot box power show the three ICF wall producing 
the largest lags. These were about 20 hours as compared to 10 hours for a standard brick/AAC 
wall. The measurements on walls 3 and 8 were repeated with the plasterboard (and it’s 
associated air cavity) removed. This had either a small or no effect on the lag times. If we take 
the lag times derived from the HFM power and simulated by Voltra the lag times were all 
about 10 hours except for the timber frame wall which was lower. 
 

Thermal cycling - U-value vs Energy used during one cycle
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8.4 LAG BETWEEN THE MIN. COLD SIDE TO THE MIN. HOT SIDE 
TEMPERATURES 

 
This is the time lag between the minimum cold surface temperature and the minimum hot 
surface temperature. The temperature fluctuations in the hot surface temperature are very 
small, varying from less than 0.1 °C for the ICF walls to about 0.4 °C for the timber frame 
wall. This time lag is only a function of the temperature cycling – not the power measurement 
method and nor was it modelled with VOLTRA. The values measured compared to the 
decrement time calculated using the procedures specified in ISO 13786 can be seen in Figure 
110. 
  
These figures show the ICF walls creating a significantly longer time lag between the external 
and internal temperatures than the brick/AAC , brick/lightweight concrete and solid AAC 
walls which in turn created a significantly longer time lag than the timber frame wall. 
 
These results also show that the plasterboard plus associated air cavity had only a very small 
effect on the two walls that were measured with and without plasterboard – that is walls 3 & 
Wall 8. 
 
Figure 110  Decrement time lag across walls 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.5 AMPLITUDE OF THE POWER FLUCTUATIONS 
 
This is the amplitude of the variation in power transferred through the test element caused by 
the temperature cycling of the cold chamber. In percentage terms the agreement between the 
two sets of values is very poor. The actual power fluctuations for these small area samples 
(1.44 m2) are, however, very small. For the six masonry walls the amplitude of those 
fluctuations only varies from 0.25 W to 0.75 W. This would explain why despite the large the 
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percentage differences in the amplitude of the power fluctuations the agreement in the energy 
used per cycle was very good. The comparison between the values obtained with the hot-box, 
HFM and VOLTRA powers can be seen tabulated in Table 21 and in Figure 108. 
 
The amplitude of heat transfer fluctuation is strongly influenced by the thermal mass. 
 
 

8.6 COMPARISON OF CALCULATED AND MEASURED TEMPERATURE 
PROFILES. 

 
The results of the temperature profile modelling for walls 3 and 8 show good agreement 
between the measured and calculated values. The differences between the measured and 
calculated interface temperatures are shown in Figure 111, Figure 112 and Figure 113 for 
Wall 3 with plasterboard, Wall 3 without plasterboard and Wall 8 with plasterboard 
respectively. 
 
Figure 111  Wall 3 with plasterboard - Differences between measured and calculated surface 
temperatures. 
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Figure 112  Wall 3 No plasterboard - Differences in measured and calculated surface 
temperatures 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 113   Wall 8 + Plasterboard - Differences in measured and calculated surface 
temperatures 
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8.7 COMPARISON BETWEEN MEASURED AND CALCULATED U-VALUES 
 
The steady state U-value of all the walls were measured using the hot-box power as specified 
in BS EN ISO 8990 and were calculated using the Voltra software. The U-value of Walls 3 
and 8 both with and without the plasterboard were also calculated using the methodology 
specified in BS EN ISO 6946. The Voltra values are compared with the measured values in 
Table 22 and the BS EN ISO 6946 values are compared with the measured U-values       
Table 23.  They are also shown in graphical form in Figure 114. 
 
 
Table 22  Comparison between the measured U-values and those calculated with Voltra 

 

 

Table 23  Comparison between the measured U-values and those calculated with EN ISO 6946 

 

 
 
 

Wall number U-value - 
Measured

U-value 
Calc.        

(Voltra)

% Diff       
(Meas-Calc)  

Meas
(W/m2.K) (W/m2.K) (%)

WALL 1 0.312 0.252 19

WALL 2 0.266 0.230 14

WALL 3 + PB 0.279 0.249 11

No plasterboard 0.285 0.263 8

WALL 4 0.283 0.269 5

WALL 5

WALL 6 0.279 0.232 17

WALL 7 0.216 0.176 19

WALL 8 + PB 0.297 0.28 6

No plasterboard 0.321 no value

Not built

Wall number U-value - 
Measured

U-value 
Calculated.    

(EN 6946)

% Diff       
(Meas-Calc)  

Meas
(W/m2.K) (W/m2.K) (%)

WALL 3 + PB 0.279 0.268 4

No plasterboard 0.285 0.276 3

WALL 8 + PB 0.297 0.302 -2

No plasterboard 0.321 0.312 3
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Figure 114  Comparison between the measured U-values of those calculated with Voltra 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There appears no obvious correlation between the difference between the calculated (with 
Voltra) U-values and the measured values with any other property such as U-value or mass. 
 
The U-values calculated using the procedures specified in EN 6946 are in good agreement 
with the measured values (see Table 23). 
 
The U-values calculated with Voltra are always lower than those measured. 
 

9 SUMMARY AND CONCLUSIONS 

9.1 SUMMARY 
 
a)  Steady state U-values   
 
The thermal properties of seven different wall structures were measured directly in the NPL 
hot box under both steady state thermal cycling conditions. The various properties (that 
included U-values) that were derived from those measurements can be seen in Table 10. The 
thermal properties of two of those walls (Wall 3 and Wall 8) were measured both with and 
without the plasterboard and its associated air cavity to try to identify the effect of the 
additional thermal resistance that this layer creates on the warm side of the system. 
 
The U-value of all the walls were calculated by Glasgow Caledonian University using 
Physibel’s Voltra software. Those results are also shown in Table 10. 
 
The U-value of two of those walls (Wall 3 and 8) were also calculated following the 
procedures in EN ISO 6946. Those values are also shown in Table 10. 
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b)  Dynamic measurements and calculations 
 
The dynamic measurements were carried out by holding the warm chamber air temperature 
constant at 24.6 °C and cycling the cold box air temperature from 2.4 °C to 14.6 °C and back 
to 2.4 °C in a 24-hour cycle.  
 
The heat flow therefore was always in one direction; from the warm chamber to the cold 
chamber. 
 
The dynamic measurements were carried out twice, one deriving the power through the walls 
from the measured hot-box power and the other by measuring the power through the wall by a 
250 mm x 250 mm heat flow transducer, fixed to the warm face of the wall.  
 
The dynamic thermal properties of all the walls were also calculated by Glasgow Caledonian 
University using the Physibel Voltra software (3D transient heat transfer software using 
rectangular blocks). 
 
The decrement time for walls 1, 2, 4, 6 and 7 were also calculated using the procedures in 
ISO 13786.  
 
From the measured dynamic data the following properties were derived (see Table 10): 
 

a) Energy (Wh) required maintaining the temperature of the warm chamber air 
temperature at 24.6 °C over one complete 24 hour cycle (see Figure 106).  

 
b) Time lag between the maximum temperature difference between the cold chamber 

and warm chamber and the resulting maximum power transfer through the wall.(see 
Figure 107).  

 
c) Amplitude of the variation in power transfer through the test element caused by the 

temperature cycling of the cold chamber (see Figure 108).  
 

d) The time lag between the minimum temperature on the cold side and the related 
minimum temperature on the warm surface (see Figure 110). 

 
The energy used per cycle was measured for each wall using both the hot box power and 
power through a 250 mm x 250 mm heat flow meter (HFM) and the results are shown in 
Table 10.  
 
 

9.2 CONCLUSIONS 
 

i) The agreement between the measured U-values and those calculated with VOLTRA ranged 
between 5% and 19% with no apparent correlation with any property such as U-value or 
mass. The measured and calculated U-values are compared in Figure 114. The overall 
measurement uncertainty of the hot box apparatus for these measurements is estimated to be 
within  ± 6.5 % based on a standard uncertainty multiplied by a coverage factor k = 2, 
providing a level of confidence of approximately 95 %. The U-values calculated with 
VOLTRA were always lower than the measured values.  
 
ii) The agreement between the measured U-values and those calculated using the procedures 
in EN ISO 6946, for walls 3 and 8, was very good, with the maximum variation of 4% 
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between the measured and calculated values (see Table 23 and in graphical form in Figure 
114).  
 
iii) The energy per cycle value correlated well with U-value (see Figure 109) and so was not 
inversely related to thermal mass. 
 
iv) The temperature of all the interfaces through the walls were measured during the cycling 
measurements these are shown in Figure 38, Figure 40,Figure 41,Figure 43, Figure 44, Figure 
47, Figure 49, Figure 51, Figure 53 and Figure 55. The temperatures of the interfaces for Wall 
3 with and without the plasterboard and Wall 8 with the plasterboard were also modelled 
using Voltra and the agreement was very good (see Figure 111, Figure 112 and Figure 113.) 
 
v) The high mass ICF walls significantly reduced the amplitude of power fluctuations created 
by the cycling (see Figure 108). Comparing to the standard brick/cavity/PUR/AAC wall 3 
with the plasterboard, the ICF walls reduced the amplitude of the power fluctuations by a 
factor of about 1.8 using the WGHB values and when compared to Wall 3 without 
plasterboard the reduction in amplitude was a factor of 4.6.  
 
The significant difference between the values of the lag time between the maximum 
temperature difference and maximum heat flow through the wall for the ICF walls (see Table 
21) has not been resolved.  On one hand the methodology used to extract this value from the 
hot-box power data was complex and therefore may be the source of the problem on the other 
hand the power lag times measured are comparable for the measured temperature lag times. 
The ratio of temperature lag times to power lag times given in Table 21  show the ICF walls 
have a ratio of about 1.3 and all the walls but the timber frame wall have a ratio of 0.7. The 
ratio for the timber frame wall was 1. 
 
There was also a conflict between the value of the time delay between the minimum 
temperature on the cold side and the minimum temperature on the warm side as measured 
using the hot box and an equivalent value calculated using the procedures in ISO 13786. The 
reason for this large discrepancy (for the ICF walls only) must be investigated. 
 
 
Future measurements 
The cycling regime selected did not reproduce the conditions that would make best use of the 
stored energy in the high mass ICF walls. 
 
Any future measurements should select warm and cold chamber temperature conditions that 
ensure bidirectional heat flow.  This will mean that in a conventional hot box heat flow meters 
must be used. 
 
It might also be necessary to have a complex temperature regime where the warm (indoor) 
chamber temperature is lowered periodically to replicate night time set-back where the air 
temperature in the internal chamber falls below the warm side wall temperature those 
ensuring heat stored in the wall is transferred into the warm chamber, so reducing the power 
demand. 
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